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On the van Hove weak-coupling limit for impurity
scattering of a quantum particle on a lattice
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Abstract. We consider the problem of quantum impurity scattering for a particle on a lattice
via a non-perturbative approach. We calculate the weak-coupling limit in the case of a directed
lattice (tree) and we show what problems arise in the more general case due to recurrence effects.
Our methods relate the problem to that of a random walk in a random environment.

1. Introduction

An important problem in solid-state physics and in transport theory in general is to
understand how the motion of particles is affected by the presence of a random environment.
For example, in a real solid, impurity scattering of the conduction electrons is of prime
importance in the conductivity properties at low temperatures.

A well known mathematical model is that of a random walk in a random environment
or scenery. There we can imagine a classical particle hopping on a lattice while interacting
with randomly placed impurities. A central theme is the derivation of diffusive behaviour
for the appropriately rescaled time evolution. At the end of section 6 we will come back to
a possible relation between our work here and some no-go theorem that recently appeared
for that classical problem.

An appropriate model for the motion of a quantum particle is the Anderson model. The
time evolution is now generated by the random Schrödinger operatorHλ = −1+λV . 1 is
the finite-difference (discrete) Laplacian andV the random potential. The strength of the
potential is parametrized byλ > 0.

In this paper we study the so-called weak-coupling limit for the pair(−1, Hλ). In that
limit, λ ↓ 0 while the producttλ2 (t is the time variable) remains constant. This procedure
has also become known as the van Hove limit, see [Hov].

The problem of this weak-coupling limit has been taken up by many but has invariantly
been based on Dyson-expansion techniques. The most successful applications are, however,
restricted to the continuum case with1 being the Laplacian onRd . The most complete
discussions are in [HLW] and [Lan]. Some of these techniques appeared already in the work
of Spohn [Spo] and Martin and Emch [ME]. The models studied by [ME] and Hugenholtz
[Hug] are lattice models and contain some gaps in the proofs. The question is whether this
can be repaired in order to get similar results as in the continuum case.
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In this paper we take a different route. Our approach is non-perturbative and we obtain
a correspondence between the original quantum problem and a related problem of a random
walk in a random environment. This, as often, goes via some kind of functional integration
formula which, however, does not seem to be very well known for the model at hand. Such
a path integral method applied to coupled systems as the one we study here first appeared
in the work of [FV]. This procedure is therefore sometimes called the Feynman–Vernon
method.

After the presentation of the model in the next section, we give a self-contained proof
of our basic starting point (in [C] it is called the Molchanov formula) in section 3.

Section 4 is devoted to the study of the weak-coupling limit for a particle hopping on
a tree. We explicitly calculate the limiting motion for various choices of the distribution of
the random potentialV . The problem of recurrence effects is studied in the last sections.
We show what can go wrong and what this implies for motion on a regular lattice.

2. The model

Let us consider a directed graphD with vertex setL. Each vertex has a finite (uniformly
bounded) and non-zero number of neighbours (adjacent vertices). For all the edges that leave
vertexx ∈ L, a fraction1xy > 0 leads to the neighboury ∈ L and a fraction 1+ 1xx > 0
leads to itself. With each vertexx ∈ L there is associated a random variableV (x) (taking
values inR) with joint distribution Q. Expectation with respect to this random field is
denoted byEV . Conditions on the distributionQ will be stated later but we always assume
that EV (V (x)) = 0, EV (V (x)2) =: V 2 < ∞. We will consider bounded complex-valued
functionsf : L → C and define

1f (x) =
∑
y∈L

1xyf (y). (2.1)

1 is the usual lattice Laplacian in the caseL = Zd , 1xy = 1/2d for nearest neighbours and
1xx = −1.

The random Schrödinger operatorHλ is then given by

Hλf (x) = −1f (x) + λV (x)f (x) (2.2)

with λ > 0. Hλ is a self-adjoint operator onl2(L) if L = Zd . We are then dealing with
the widely studied Anderson model onZd . We are interested in the dynamical (real-time)
evolution generated byHλ when we rescale the time byλ2 and letλ ↓ 0. In other words,
our problem is to analyse the limitλ ↓ 0, t ↑ ∞ such thattλ2 = t0 of

αλ
t f = e−itHλ

e−i1tf (2.3)

for functions f on L describing the initial state of the particle. This corresponds to a
scattering problem in a random environment sinceαλ

t contains the random potentialV . The
limit is meant in the weak sense, i.e. we are interested in

lim
λ2t=t0
λ↓0

EV (αλ
t f ). (2.4)

In other cases (where the graphD is really directed)Hλ will not be self-adjoint but we will
take advantage of our more general set-up in section 4 to prepare the caseL = Zd .

Note that the potentialV can be considered as the reservoir in the traditional approach
to the weak-coupling limit but we have assumed this reservoir being relaxed and thus not
evolving in time.
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The main goal of this paper is to show how one can relate this problem to a classical
random walk in a random scenery. With this new approach we get explicit results for
the limiting behaviour for certain choices of the free evolution1 on L and we identify
situations in which the limit does in fact not exist.

3. A Feynman-type formula

Our approach is based on a Feynman-type formula for quantum evolutions on discrete
spaces which seems to be little known. In [C] it is called the Molchanov formula. Our
presentation is self-contained, but we do not give the most direct proof (a shorter, more
direct proof can be found in [C]). We do this to be able to introduce some calculations and
formulae we need in the following sections.

Proposition 1.Let Ex0=x denote the expectation with respect to the continuous time random
walk xs, s > 0, onD generated by1. Let N(t) be the Poisson process giving the number
of jumps of the walk in the time interval [0, t). Then, for all bounded complex-valued
functionsf , for all bounded real-valued functionsV , and for allx ∈ L

e−i(−1+V )tf (x) = e(1−i)tEx0=x

[
iN(t)f (xt ) exp

(
−i

∫ t

0
V (xs) ds

) ]
. (3.1)

Proof. Consider the right-hand side of (3.1). This is an expectation for a continuous time
random walkxs but we can replace this by a similar expectation over the underlying discrete
time random walkx(n), x(0) = x, n = 0, 1, . . . , if we think of x(n) as the position of the
continuous time random walker after then-th jump. This discrete time random walkx(n)

on D is given by the transition probabilities

Prob[x(n) = y|x(n − 1) = z] = 1zy z 6= y

Prob[x(n) = y|x(n − 1) = y] = 1 + 1yy.

All we have to do is to integrate out the waiting times for the continuous time random walk.
To do this, let us insert the identity 1= ∑

k>0 I [N(t) = k] into the expectation in (3.1),
whereI [N(t) = k] is the indicator function of having exactlyk jumps in time [0, t). Note
that if N(t) = k, then∫ t

0
V (xs) ds =

k−1∑
n=0

V (x(n))τn + V (x(k))

(
t −

k−1∑
n=0

τn

)
whereτn, n = 0, . . . , k is a family of independent and identically exponentially distributed
random variables with mean 1 (these are the waiting times) conditioned on (the fact that
N(t) = k if and only if)

0 6 t −
k−1∑
n=0

τn < τk.

We therefore have

Ex0=x

{
f (xt ) exp

(
−i

∫ t

0
V (xs) ds

)
I [N(t) = k]

}

= Ex(0)=x

{
f (x(k))

∫ ∞

0
dτ0 · · ·

∫ ∞

0
dτk I

[
0 6 t −

k−1∑
n=0

τn < τk

]
e−τ0−τ1−···−τk
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× exp

(
−i

[k−1∑
n=0

V (x(n))τn + V (x(k))

(
t −

k−1∑
n=0

τn

)]}

= e−tEx(0)=x

{
f (x(k))F̃k(t, V )

}
where

F̃k(t, V ) =
∫ ∞

0
dτ0 · · ·

∫ ∞

0
dτk−1 I

[
k−1∑
n=0

τn 6 t

]

× exp

(
−i

[k−1∑
n=0

V (x(n))τn + V (x(k))

(
t −

k−1∑
n=0

τn

)])
for k > 1, andF̃0(t, V ) = e−iV (x)t . Now, note that

F̃k(t, V ) = L−1Fk(·, V )(t)

is the inverse Laplace transform of

Fk(p, V ) =
k∏

n=0

∫ ∞

0
dτ e−pτ e−iV (x(n))τ

=
k∏

n=0

1

p + iV (x(n))
(3.2)

for p ∈ C \ R−. Hence the right-hand side of equation (3.1) equals

e−itL−1

[∑
k>0

ikEx(0)=x

{
f (x(k))

k∏
n=0

1

p + iV (x(n))

}]
(t). (3.3)

Now, using the Markov property of the random walk the expectationEx(0)=x{·} equals

1

p + iV (x)
· Ex(0)=x

{
1

p + iV (x(1))
· Ey(0)=x(1)

[
f (y(k − 1))

k−1∏
n=0

1

p + iV (y(n))

]}
wherey(n) is the (discrete) random walk starting aty(0) = x(1). Iterating this procedure
we get

equation (3.3)= e−itL−1

{
(p + iV )−1

∑
k>0

[
i(1 + 1)(p + iV )−1

]k

}
(t)f (x)

and hence we conclude that the right-hand side of (3.1) equals

e−itL−1

{
(p + iV )−1 1

1 − i(1 + 1)(p + iV )−1)

}
(t)f (x)

= e−itL−1

{
1

p + iV − i(1 + 1)

}
(t)f (x)

= e−i(−1+V )tf (x).

�
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4. The case without loops

We start the evaluation of the limitλ ↓ 0, λ2t = t0 (constant) for the case whereD is a
directed tree. This implies that for all pathsx(n), starting atx(0) = x the distance (number
of jumps) d(x(n), x) = n. Moreover we restrict ourselves to the case where for all paths
V (x(n)) = Vn is a binary symmetric Markov chain. That is,Vn = ±V with transition
probabilities

Prob[Vn = +V |Vn−1 = +V ] = Prob[Vn = −V |Vn−1 = −V ] ≡ γ

with γ ∈ [0, 1]. The simplest example is that of a Bernoulli random field(V (x), x ∈
L), V (x) = ±V with equal probability onD = directed Bethe lattice, corresponding to
γ = 1

2. The caseγ 6= 1
2 is obtained by taking the(V (x), x ∈ B)B independent and

identically distributed Markov chains for each of the branchesB of the tree starting from a
common vertex.

Theorem 4.1.Suppose that for allx ∈ L and for all pathsx(n) with x(0) = x on the directed
tree D, V (x(n)) = Vn is a binary symmetric Markov chain with parameterγ (γ 6= 1) as
above. Then

lim
λ↓0

EV (αλ
t f ) = exp

(
i

t0

2(1 − γ )

V 2

1 + 1

)
f (4.1)

uniformly on compacts (t0 ∈ K = compact), and pointwise for bounded functions
f : L → C.

Remark.(1+1)−1f (x) = f (y), wherey is the uniquely determined vertex for which there
is an arrow fromy to x. In particular,1xx = −1. Therefore,‖(1 + 1)−1‖∞ = 1.

Proof. We must take the expectationEV of equation (3.3). The important thing to note
is that under the hypothesis of the theorem, the expectation over the random walk and the
expectation over the random field factorizes. This means that (withft = e−i1tf )

EV Ex(0)=x

{
ft (x(k))F̃k(t, λV )

}
= L−1

(
EV Ex(0)=x

{
ft (x(k))

k∏
n=0

1

p + iλV (x(n))

})
(t)

= L−1

(
Ex(0)=x

{
ft (x(k))EV

[ k∏
n=0

1

p + iλV (x(n))

]})
(t)

= (1 + 1)kft (x)L−1

(
EV

[ k∏
n=0

1

p + iλVn

])
(t). (4.2)

We will rewrite the expectation value w.r.t.V as

EV

[
k∏

n=0

1

p + iλVn

]
= 1

2
tr


 γ

p+iλV

1−γ

p−iλV

1−γ

p+iλV

γ

p−iλV

k

·
 1

p+iλV
1

p−iλV

1
p+iλV

1
p−iλV




= 1
2 tr[MkM ′].

Now we use the fact that (3.3)= (3.1) and get

EV (αλ
t f (x)) = 1

2
e−itL−1

[∑
k>0

(i(1 + 1))kft (x) tr(MkM ′)

]
(t).
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Note that1 + 1 is a bounded operator onL∞(L). The last expression equals

1

2
e−i(1+1)t 1

2π i

∫ c+i∞

c−i∞
dp ept tr[(1 − i(1 + 1)M)−1M ′]f (x)

where in order to get a summable series we have shifted the line of integration parallel to
the imaginary axis. Now

tr[(1 − i(1 + 1)M)−1M ′] = 2
p − i(1 + 1)(2γ − 1)

(p − A+)(p − A−)

where

A± = i(1 + 1)
{
γ ±

√
(1 − γ )2 + (1 + 1)−2λ2V 2

}
.

Since(1 + 1)−1 is a bounded operator the square root is well defined for smallλ by its
series expansion in the point(1 − γ )2. By using the residue calculus (no problems arise
because the operatorsA± are bounded) for the inverse Laplace transform we get

e−i(1+1)t
[
(1 + O(λ))etA+ + O(λ)etA−

]
f (x)

= (
1 + O(λ)

)
exp

(
it

[
λ2V 2

2(1 − γ )(1 + 1)
+ O(λ3)

])
f (x) + O(λ).

Rescaling time ast = t0λ
−2 we finally get the result (4.1). �

Remarks.(i) If we take a general random field(V (x), x ∈ L) of independent and identically
distributed random variables withEV (V ) = 0, EV (V 2) < ∞, then one can show that the
same result (4.1) withγ = 1

2 holds.
(ii) It is obvious how to generalize to the case whereEV (V (x)) = λm 6= 0. In that case

one must simply multiply the limit in (4.1) by e−imt0.
(iii) The limit does not exist whenγ = 1.

5. Finite systems

5.1. Finite Laplacian

Now we consider a cubeL ⊂ Z3 centred at the origin containingN3 sites, and1

(generating the free time evolution onL) being the finite volume Laplacian with periodic
boundary conditions onL. The reciprocal latticeL∗ (first Brillouin zone) contains the points
θ ∈ {0, 2π(1/N), . . . , 2π(N − 1)/N}3 and if θ, θ ′ ∈ L∗, then∑

x,y∈L
eixθe−iyθ ′

EV (V (x)V (y)) = N3δθ,θ ′V 2

if the {V (x)} are independent. This property is called van Hove’s diagonal singularity
condition. If we would then take the control of the Dyson series (exchange of limits, see
lemma 2.2 of [ME]) for granted and apply the proof presented in [ME], we would get a
well-defined weak-coupling limit forEV (f, αλ

t g) wheref andg are functions onL.
Let us, however, inspect what finite volume computations give. Consider finite graphs

(D, 1) of n vertices with1 symmetric (see the beginning of section 2). Sincen is finite,
we take realizations of the potentialV for which

∑
x∈L V (x) = 0.

Let mi(λ), 1 = 1, . . . , n be the eigenvalues of the matrixHλ = −1 + λV . They
converge tomi(0) = mi (the eigenvalues of−1) as λ → 0. In the same way, the scalar
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product〈mj(λ)|mi〉 goes toδi,j (i, j = 1, . . . , n) asλ → 0 where the{|mj(λ)〉} are a basis
of orthonormal eigenvectors ofHλ. We thus have that

〈mi |e−itHλ

e−it1|mj 〉 → 0 for i 6= j, λ → 0

and

〈mi |e−itHλ

e−it1|mi〉 =
∑

j

|〈mj(λ)|mi〉|2e−it (mj (λ)−mi)

= e−it (mi (λ)−mi) + O(λ).

But mi(λ)−mi = O(λ) in general (except whenn = 2). This means that the weak-coupling
limit (where time is rescaled asλ2t = t0) cannot exist here. This remains true when we
average over the potentialV (say with independent identically distributed random variables
V (x) = 0, ±1) conditioned on

∑
x∈L V (x) = 0.

Confronting this with the assumed control of the Dyson series (above) we come to the
conclusion that we cannot hope for success via a (perturbative) Dyson-series approach in the
lattice case. The infinite-volume version of this argument should be based on equation (6.7)
but as we saw here, the same difficulty is already apparent at finite volumes.

5.2. Finite disorder

For any graph with a zero density of impurities the weak-coupling limit gives the identity.
This means that if we take an infinite graph but putV (x) = 0 except on a finite number on
vertices, then limλ↓0 αλ

t f = f . This was shown in [ME] and we just want to mention here
how this follows from our representation (3.1). Suppose that|V (x)| 6 V andV (x) = 0 for
x 6∈ M with M a finite region inZ3. Then∣∣∣∣∫ t

0
V (xs) ds

∣∣∣∣ 6 V T (t, M)

whereT (t, M) is the total time spent by the random walk in the regionM up to timet . But
E[T 2(t, M)] 6 E[T 2(∞, M)] < ∞ so thatλ

∫ t

0 V (xs) ds converges to zero in distribution
asλ ∼ t−2 goes to 0.

6. The general case

6.1. Some heuristics

The main hope in our non-perturbative approach to this weak-coupling limit lies in the
representation of the quantum evolution via a classical stochastic process (random walk in
a (complex) random environment). This relation introduces a body of insights (results and
intuition) which is just not available on the operator level of the problem. An illustration
of that can be found in the understanding why one would like to scale the random field by
λ, while rescaling time ast = t0λ

−2. What happens is that, ast → ∞, the integral in the
Molchanov formula (3.1) behaves like

λ

∫ t

0
V (xs) ds ' λ

√
t · ξ = √

t0 · ξ (6.1)

with ξ a Gaussian random variable as follows from a central limit theorem for the random
variablesV (xs) with distribution induced from that of the random walkxs and of the random
field V (x).
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Here is a heuristic way of deriving theorem 4.1 based on this observation. Suppose
that we condition on the number of jumpsN(t) = k (this has probability e−t t k/k!) in our
expectationEx0=x of (3.1). We further assume that the waiting times in [0, t) are simply
equal toτ = t/(k+1). Then, approximately, we get thatEV (αλ

t f ) equals (withft = e−i1t )

e−itEV Ex0=x

{
iN(t)ft (xt ) exp

(
−iλ

∫ t

0
V (xs) ds

)}

' e−it
∑
k>0

(it (1 + 1))k

k!
ft (x)EV

(
exp

(
−iλ

t

k + 1

k∑
n=0

Vn

))
.

Assuming central-limit behaviour, we can estimate this last expression by

e−it (1+1) ·
∑
k>0

(it (1 + 1))k

k!
f (x) exp

(
−1

2

t2

k + 1
λ2χV

)

with χV = ∑
n>0 EV [V0Vn] = V 2/(2(1−γ )). Now, it is not so difficult to convince oneself

that

lim
λ↓0

e−iyλ−2
∑
k>0

(iyλ−2)k

k!
g(kλ2) = g(iy) (6.2)

for a class of sufficiently regular functionsg. Applying this to the functionf (r) = e− 1
2 χV /r

we get indeed the limit (4.1) of theorem 4.1 (except for the factor1
2). It is obvious that

there must be huge cancellations in (6.2) for the limit to exist. For example, if we replace
g(kλ2) by a more general dependence, sayĝ(k, λ2) then the limit (6.2) fails to exist in
general. Now, if we trust that approximating the waiting times in the calculation of (3.1)
does perhaps not give exactly the correct limit but at least gives some hint of what the correct
limit may be, then we end up exactly with a calculation as in (6.2) but withg(kλ2) replaced
by ĝ(k, λ2). And hence the existence of the weak-coupling limit seems very doubtful.

The arguments above also give support to the conclusion that the quantum weak-coupling
limit, if it exists, should be independent of the details of the random fieldV (and one has
the same universality as in the central-limit theorem).

6.2. One-loop pathologies

We illustrate here via a simple example what can go wrong in the weak-coupling limit
because of recurrence effects in the associated random walk.

Take a linear chainL = Z for which we draw for eachx ∈ Z an arrow fromx to x + 1
and a loop fromx = 0 to x = 0. This means that1xy = 1 if y = x + 1, x 6= 0, 1xx = −1
if x 6= 0, −100 = 101 = 1

2 and all the other matrix elements are zero. The operator1 is
now

1f (x) =
{

1
2[f (1) − f (0)] x = 0

f (x + 1) − f (x) x 6= 0

with σ+ being the right shift onZ. This means that for walks starting atx = 0, there are
the following possibilities which can be realized: ifk > 1 is the number of steps in the
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walk, then

x(0), x(1), . . . , x(k) =



0, 1, . . . , k with probability 1
2

0, 0, 1, . . . , k − 1 with probability( 1
2)2

0, 0, 0, . . . , k − 2 with probability( 1
2)3

...

0, 0, . . . , 0, 1 with probability( 1
2)k

0, 0, . . . , 0 with probability( 1
2)k.

Next we calculate the expectation appearing in (3.3):

∑
k>0

ikEx(0)=x

{
f (x(k))

k∏
n=0

1

p + iλV (x(n))

}

=
∞∑

k=1

ik
k−1∑
l=0

ft (k − l)

(
1

2

)l+1

EV

[(
1

p + iλV

)l+1
]

k−1∏
n=0

EV

(
1

p + iλV (n)

)

+
∞∑

k=0

ik
(

1

2

)k

ft (0)EV

[(
1

p + iλV (0)

)k+1
]

(6.3)

with ft = e−it1f . We show in the appendix that for a constant functionf ≡ a equation (6.3)
is equal to

1

2
a

[
ip

p2 − ip + λ2V 2
− i

p ± iλV

p ± iλV − 2i

]
p

(p ± iλV )2
+ 1

2
a

1

p ± iλV − 1
2i

. (6.4)

Now, according to equation (3.3) we take the inverse Laplace transform w.r.t.p in the
point t and then multiply the whole with e−it . By using the residue calculus we find the
term a exp

(
it (λ2V 2 + O(λ3))

)
stemming from the roots ofp2 − ip + λ2V 2 plus bounded

(in λ) terms which come from the other roots being of the form constant+ O(λ). Rescaling
time ast = t0λ

−2 we get convergence of the first term toaeit0V 2
and oscillating terms like

exp
(
it0λ−1V

)
which donot converge in the limitλ ↓ 0 and which do not cancel each other

because they also appear at different frequencies.
In the convergent termaeit0V 2

we recognize the result (4.1) of the weak-coupling limit
for the case of a tree onZ with γ = 1

2; (1 + 1)−1 is equal there to the left shift.
The result for the one-loop example is so to say the result as for the no-loop case plus

oscillating non-convergent terms arising from the presence of a single loop at 0.
In the sense of distributions one would always get a limit ofαλ

t f = e−iHλte−i1tf

becauseαλ
t f is a bounded function ofλ. In the one-loop example this would mean that we

simply neglect (or project out all paths with at least one loop) the oscillating terms, because
viewed as distributions they tend to 0 asλ ↓ 0.

Remark. We can think of this continuous time random walk with the single loop at 0 as
a random walk without loops and with exponentially distributed waiting times (as usual)
except at the point 0 where we have a geometric distribution of the waiting time.
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6.3. The regular-lattice case

Consider finally the problem of the weak-coupling limit onL = Zd (d > 3) with the usual
lattice Laplacian. We take the(V (x), x ∈ Zd) to be a random field of independent and
identically distributed random variables taking the valuesV (x) = ±1. The difference with
the analysis of section 4 is of course that now the graphD contains loops.

In the previous example of section 6.2, we saw how the presence of just one loop (and
even when it can be visited only once by the random walker) already has the effect of
destroying the weak-coupling limit. We will next argue why for the regular-lattice case we
also expect that this limit may not exist.

Consider the functional integral (3.1). It can be viewed as consisting of two parts.
There is a first factor e(1−i)t iN(t) which has expectation equal to one. Note, however, that
the variance

e2(1−i)tEx0=x [(−1)N(t)] = e−2it

is strongly oscillating ast ↑ ∞. The question is how these oscillations can be cancelled by
the second factor. For this second factor we know from [KV] and [MFGW] that

lim
t↑∞

EV Ex0=x

[
exp

(
−i

√
t0

t

∫ t

0
V (xs) ds

)]
= e− 1

2 t0χV

where

χV = lim
t↑∞

EV Ex0=x

[
1

t

∫ t

0

∫ t

0
V (xs)V (xs ′) ds ds ′

]

= V 2 lim
t↑∞

Ex0=x

[
1

t

∫ t

0
ds

∫ t

0
ds ′ δxs ,xs′

]

= V 2 lim
t↑∞

1

t
Ex0=x

[∑
y∈Zd

l2(y, t)

]
wherel(y, t) = ∫ t

0 δxs ,y is the local time spent by the walk on the pointy up to timet . But
Ex0=x [l2(y, t)] 6 Ex0=x [l2(x, t)] so that

Ex0=x

[∑
y∈Zd

l2(y, t)

]
6 Ex0=x [l2(x, t)N(t)]

6 E[N(t)]Ex0=x [l2(x, ∞)].

Hence

χV 6 V 2Ex0=x [l2(x, ∞)] < ∞
by the transience of the continous time simple random walk onZd , d > 3.

Now because of the presence of loops the expectation in (3.1) does not factorize as a
product over the two factors above (this did happen in the directed tree case of section 4).
Moreover we must insert the initial wavefunctionf . We must therefore consider the
expectation of the second factor

g(t, k) = EV Ex0=x

[
e−i1tf (xt ) exp

(
−i

√
t0

t

∫ t

0
V (xs) ds

)∣∣∣∣N(t) = k

]
(6.5)
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for a fixed number of jumpsN(t) = k, and require that the behaviour of the weak-coupling
limit be

lim
λ2t=t0,λ↓0

EV (αλ
t f ) = lim

t↑∞
e−it

∞∑
k=0

(it)k

k!
g(t, k). (6.6)

Clearly there are choices ofg for which this last limit makes sense. For example, we can
take g(t, k) = e−it2k but alsog(t, k) = ∫ ∞

0 dp h(p)e−pk/t for someh ∈ L1[0, ∞) gives
a well-defined limit. However, the reader will not have any difficulty in finding functions
g(t, k) for which the limit does not exist and in realizing that the behaviour ofg(t, k) for
small k matters very much. This to say that the existence of the limit (6.6) is a very subtle
business.

So let us look back at the expression (6.5) forg(t, k). Taking the expectation over the
disorder, we have

g(t, k) = Ex0=x

[
e−i1tf (xt ) exp

(
V 2

2

t0

t

∑
y

l2(y, t)

)∣∣∣∣N(t) = k

]
.

It does not seem unreasonable to expect that when we stop the process whenN(t) = k, that∑
y

l2(y, t) ' kd/2

(
t

kd/2

)2

= t2

kd/2
.

It leads us to believe that

g(t, k) ' e−i1t (1 + 1)kf (x) exp

(
−V 2

2

t

kd/2

)
.

The limit (6.6) does not exist for this last choice ofg(t, k).
This scepticism can be further substantiated by referring to the results about loop

condensation effects in the behaviour of random walks in a random scenery as recently
obtained by [KMSS]. Theorem 3 of [KMSS] tells us that for almost every realization of
the random field(V (x), x ∈ Zd) (now V (x) = ±1) and for allx ∈ Zd

lim
k↑∞

1

k
ln Ex0=x

[
exp

(
λ

k−1∑
n=0

V (x(n))

)]
= λ (6.7)

while the formal perturbation series would start with a term of orderλ2. This means that
the spectrum ofHλ is shifted by O(λ) with respect to that of the Laplacian and that an
argument based on perturbation theory for the existence of the weak-coupling limitt ' λ−2

should not be trusted.
A more physical way of expressing all this may be to argue that the behaviour is not

purely the scattering we might expect; there is a finite amplitude for the particle getting
trapped in a bound state. A block ofNd sites all having potentialV (x) = −V will give
a bound state ifN is sufficiently large. The presence of loops makes this bound state
available.

7. Conclusions

We have considered the problem of the van Hove weak-coupling limit for a quantum particle
undergoing impurity scattering. For a directed lattice (tree) we have calculated the limit
explicitely. For the regular lattice we have argued that this limit does not exist.

Our methods are based on a rigorous relation that we established between the quantum
problem and the problem of a random walk in a random environment. This approach is
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non-perturbative and distinguishes itself from the usual Dyson-series approach which has
worked in the continuum case, which has not worked in the lattice case (see the mistakes
and gaps in the ‘proofs’ in [ME] and [Hug]), and which, as we argued, may fail in the
lattice case.
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Appendix. Analysis of section 6.2

Here we work out the weak-coupling limit for the example of the linear chain of section 6.2.
We recall that the expectation

EV

[(
1

p + iλV

)l
]

= 1

2

(
1

p + iλ

)l

+ 1

2

(
1

p − iλ

)l

.

We will work with the constant functionf ≡ a; e−it1f is then equal toa.
At first we have to deal with the sums

1

2
a

∞∑
k=1

ik
k−1∑
l=0

(
1

2

)l+1 (
1

p ± iλV

)l+1 (
p

p2 + λ2V 2

)k−l

+ 1

2
a

∞∑
k=0

(
i

2

)k (
1

p ± iλV

)k+1

= 1

4
a

1

p ± iλV

∞∑
k=1

(
ip

p2 + λ2V 2

)k k−1∑
l=0

(
1

2

p ∓ iλV

p

)l

+1

2
a

1

p ± iλV

∞∑
k=0

(
i

2(p ± iλV

)k

= 1

4
a

1

p ± iλV

∞∑
k=1

(
ip

p2 + λ2V 2

)k

· 1 − ( 1
2(p ∓ iλV )/p)k

1 − 1
2(p ∓ iλV )/p

+1

2
a

1

p ± iλV

1

1 − i/
(
2(p ± iλV )

)
= 1

4
a

1

p ± iλV

[
ip/p2 + λ2V 2

1 − ip/p2 + λ2V 2
−

1
2i(p ± iλV )

1 − 1
2i(p ± iλV )

]

× 1

1 − 1
2(p ∓ iλV )/p

+ 1

2
a

1

p ± iλV − 1
2i

= 1

2
a

[
ip

p2 − ip + λ2V 2
− i

p ± iλV

p ± iλV − 2i

]
p

(p ± iλV )2
+ 1

2
a

1

p ± iλV − 1
2i

.

This is exactly equation (6.4) of section 6.2.
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